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ABSTRACT 

We present Cluster Touch, a combined user-independent 
and user-specific touch offset model that improves the 
accuracy of touch input on smartphones for people with 
motor impairments, and for people experiencing 
situational impairments while walking. Cluster Touch 
combines touch examples from multiple users to create a 
shared user-independent touch model, which is then 
updated with touch examples provided by an individual 
user to make it user-specific. Owing to this combination, 
Cluster Touch allows people to quickly improve the 
accuracy of their smartphones by providing only 20 touch 
examples. In a user study with 12 people with motor 
impairments and 12 people without motor impairments, 
but who were walking, Cluster Touch improved touch 
accuracy by 14.65% for the former group and 6.81% for the 
latter group over the native touch sensor. Furthermore, in 
an offline analysis of existing mobile interfaces, Cluster 
Touch improved touch accuracy by 8.21% and 4.84% over 
the native touch sensor for the two user groups, 
respectively. 
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Figure 1: Cluster touch takes touch examples from 
individuals (left) and combines them with a user-
independent model to create a user-specific touch model 
(right). Arrows convey corrective touch offsets by region. 

1 INTRODUCTION 

Touch input is one of the most ubiquitous forms of 
interacting with computing systems. As an input method, 
touch is direct, fast, and intuitive, which makes it popular 
among users. The popularity of touch input can be 
attributed to the proliferation of touch-enabled devices such 
as smartphones, tablets, wearables, public kiosks, and 
interactive wall displays.  

Smartphones are one of the most pervasive touch-
enabled devices in the world today. Smartphones offer 
many benefits to users, like the ability to communicate with 
friends and family, complete work on-the-go, and access 
the internet while away from the home or office. For people 
with motor-impairing conditions like cerebral palsy or 
muscular dystrophy, smartphones can also provide a sense 
of freedom and empowerment [31,42]. However, many 
users with motor-impairing conditions encounter 
accessibility challenges when interacting with their 
smartphone touch screen [22,23,42,51]. Inaccurate touch 
input on smartphones can make it difficult to perform 
everyday tasks such as sending text messages, composing 
emails, taking photos, or playing games [39,42,51]. Users 
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undergoing the effects of situational impairments [49,50]—
induced by activities such as walking—also experience 
difficulties with touch accuracy [3,20,32,33]. Actions like 
walking induce vibrations that can cause users to be less 
accurate when touching the screen, resulting in more input 
errors [3,20]. 

Prior research in lab [10,14,16,22,23,30,40,51] and field 
[1,31,38,42] settings have highlighted the numerous 
accessibility challenges experienced by people with motor 
impairments when interacting with touch-enabled devices. 
However, our understanding of the magnitude and 
direction of touch offsets made by users with motor 
impairments, and users undergoing the effects of situational 
impairments, is limited. Understanding offset errors will 
allow us to implement touch models that can accommodate 
and correct users’ touches, resulting in more accurate touch 
input.  

To improve the accuracy of touch input on smartphones 
for people with motor impairments, and people without 
motor impairments undergoing the effects of situational 
impairments, specifically walking, we present: (1) an 
exploration of the touch error offsets committed by four 
users with motor impairments, and eight users without 
impairments while standing and walking, and (2) a 
combined user-independent and user-specific touch model 
called Cluster Touch. In our touch-offset exploration, we 
found that the direction of touch offsets made by users with 
and without motor impairments were similar, but the 
magnitude of the errors was more pronounced for users 
with motor impairments, and for users without motor 
impairments while walking, than for stationary people. 

Cluster Touch consists of a user-independent model that 
combines touch examples from multiple users to learn 
smartphone touch behaviors across all regions of the 
screen. Cluster Touch combines the user-independent 
model with examples from a given user to make the model 
user-specific, allowing it to more accurately correct touch 
offsets generated by that user (see Figure 1). The advantage 
of Cluster Touch is that it allows users to calibrate their 
smartphone touch screens quickly by only providing ~20 
touch examples. This advantage is significant for people 
with motor impairments, who often fatigue quickly and for 
whom extensive calibration can be a deterrent. 

To evaluate Cluster Touch, we conducted three separate 
evaluations. First, we conducted an interactive target-
selection study with 12 participants with motor 
impairments and 12 participants without impairments, but 
who were walking. Cluster Touch improved touch accuracy 
by 14.65% and 6.81% over the native touch sensor for the 
two user groups, respectively. 

Second, in an offline analysis of predicted touch 
accuracy, Cluster Touch was 20.20% and 5.61% more 
accurate than the native touch sensor in predicting 
intended touch locations for users with and without motor 
impairments, respectively. Also, we compared these results 
to two prior statistical machine learning models of touch 
designed to improve touch accuracy [9,55]. We found that 
Cluster Touch was 11.36% more accurate than the Gaussian 
Process model [55] and 10.79% more accurate than the 
Linear Offset model [9] for participants with motor 
impairments. For participants without motor impairments 
who were walking, Cluster Touch was 4.64% more accurate 
than both the Gaussian Process and Linear Offset models. 

Third, we evaluated Cluster Touch in an offline analysis 
of predicted touch accuracy on existing smartphone user 
interfaces. We found that Cluster Touch improved touch 
accuracy by 8.21% and 4.84% over the native touch sensor 
for users with and without motor impairments, 
respectively. 

The contributions of this work are: (1) an examination of 
the touch offsets of people with motor impairments, and of 
people without motor impairments who are standing and 
walking; (2) Cluster Touch, a combined user-independent 
and user-specific touch model that corrects touch offsets on 
smartphones; (3) empirical results from three separate 
evaluations of Cluster Touch, two offline and one 
interactive, all showing improvements over the native 
touch sensor for people with motor impairments and 
people who are walking; and (4) empirical results 
comparing Cluster Touch to two prior statistical machine 
learning models of touch [9,55]. This work advances our 
understanding of the touch behaviors of people with motor 
impairments, and of people undergoing the effects of 
situational impairments, and provides an ability-based 
design [57,58] approach for improving the accuracy and 
accessibility of smartphone touch screens. 

2 RELATED WORK 

This work adds to, and builds upon, prior research on 
touch screen accessibility for people with motor 
impairments, probabilistic and statistical models of touch 
input, theories of touch input, the effects of situational 
impairments, and ability-based design. These topics are 
briefly covered below. 

2.1 Touch Screen Accessibility for People with 
Motor Impairments 

Understanding and improving the accessibility of touch 
screens has been a mission for many researchers over the 
years, and researchers have investigated different aspects 
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of touch screen use. Some research has focused on users’ 
lived experience, seeking to understand how people with 
motor impairments use and interact with touch screens in 
their daily lives [1,31,38,39,42]. In these investigations, 
researchers found that mobile touch-enabled devices can 
provide a sense of freedom and empowerment to users 
with motor impairments [31,42].  

In addition to naturalistic explorations of touch screen 
accessibility, researchers have also investigated touch 
screen use in lab settings [10,14,17,22,23,30,40,51,59]. 
Trewin et al. [51] found that users with motor 
impairments experienced difficulties when performing 
sliding and tapping gestures, which often resulted in more 
errors and the accidental activation of other smartphone 
features, such as zooming. Guerreiro et al. [22,23] 
investigated how well users with motor impairments 
could perform different interaction techniques. The 
authors found that users’ performance varied depending 
where on the screen the user was targeting. Our work 
builds upon this prior research by understanding the 
touch error offsets created by users with motor 
impairments while touching the screen, and corrects those 
errors with Cluster Touch. 

Other researchers have created new algorithms and 
input techniques to improve the accessibility of touch 
input for people with motor impairments. Biswas and 
Langdon [6] devised a set of models based on an analysis 
of users’ hand strength to improve pointing accuracy on 
different input devices. Montague et al. [38] created a 
novel tap-gesture recognizer that uses probabilistic 
instead of heuristic criteria to identify taps made by users 
with motor impairments. Montague et al. [37] also created 
a Shared User Modeling Framework that adjusts the 
location and size of user interface elements to best 
accommodate the touch behavior of the user. 
Wacharamanotham et al. [53] introduced Swabbing, an 
interaction technique designed for older adults that allows 
users to drag their finger across the screen and lift to 
select their intended target. Mott et al. [40] created Smart 
Touch, a template-matching algorithm that allows users to 
touch using whichever part of their hand they choose. A 
goal of Cluster Touch is to allow users to calibrate their 
smartphone touch screens quickly, improving touch input 
accuracy without changing the underlying interface. 

2.2 Probabilistic and Statistical Models of Touch 

Touch is an inherently uncertain form of input. Because a 
touch represents an entire area—unlike a mouse cursor, 
whose hotspot occupies only a single pixel—the true 
location a user intends to touch is left to the system to 

interpret. Researchers have devised methods and 
techniques to leverage the uncertain nature of touch input 
to improve touch accuracy. Schwarz et al. [48] created an 
architecture, a framework [46], and new methods [47] for 
handling uncertain inputs such as touch. Bayesian Touch 
[5] by Bi and Zhai is a target acquisition technique that 
abandons the commonly used bounding box selection 
heuristic in favor of a statistical selection method based on 
Bayes’ rule and the bivariate Gaussian distribution 
principle of finger touch [4]. ProbUI [8] by Buschek and 
Alt replaces static target bounding regions with 
probabilistic gestures, allowing users to perform a wide 
array of actions on otherwise static targets. Probabilistic 
methods have shown great promise in improving touch 
accuracy, but they require systems to be target-aware [2], 
meaning the system must be aware of the size, location, 
and state off all on-screen targets—a difficult feat to 
accomplish both practically and theoretically [13]. 

Other researchers have treated touch input as a 
machine learning problem and have used different 
algorithms to improve touch accuracy. Weir et al. [54,55] 
used Gaussian Process regression to build user-specific 
models of touch. Buschek et al. [9] created a machine 
learning approach for training user-specific touch models 
that work across different devices. TouchML [7] by 
Buschek and Alt is a machine learning toolkit that 
provides access to different touch-offset models. Touch-
offset models based on machine learning have been shown 
to be effective for improving touch accuracy, but they 
often require hundreds of touch examples to reach their 
best performance [55]. Providing hundreds of touch 
examples can be problematic for people with motor 
impairments, as they typically take longer to input 
touches and experience fatigue faster than users without 
motor impairments. Cluster Touch creates a user-specific 
model with only 20 touch examples, which allows users to 
calibrate their smartphone touch screen quickly and 
without exerting much effort. 

2.3 Theories of Touch Input 

Holz and Baudisch [28,29] conducted two studies to 
understand users’ perceptions of touch. In their first 
study, they introduced the general perceived input point 
model [28], which claimed that the primary source of 
touch input error is not caused by the fat finger problem 
[52], but is caused by users’ perception of touch input, 
which creates systematic errors when using touch. They 
found that applying a reverse touch offset could correct 
erroneous touch points. In their second study [29], the 
authors explored different touch models based on visible 
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finger properties. Again, the authors found that applying a 
corrective touch offset could improve accuracy. Henze et 
al. [25] conducted a large scale analysis of touch input 
gathered from a mobile game. The authors found that the 
direction of touch error offsets varied depending on the 
region of the screen. Together, these studies show that 
users introduce systematic touch errors, and that a reverse 
offset can correct these errors. Cluster Touch builds on 
these prior efforts by examining and correcting touch 
offsets created by people with motor impairments, and 
people undergoing the effects of situational impairments. 

2.4 Situational Impairments and Touch 

Situationally-induced impairments and disabilities, or 
“situational impairments” for short, are caused by 
environmental factors that temporarily affect users’ 
abilities to interact with computing devices [49,50]. 
Everyday activities such as walking or carrying a bag of 
groceries can have adverse effects on touch accuracy 
[3,11,44]. Lin et al. [33] found that tapping accuracy was 
significantly reduced while walking. Kane et al. [32] 
proposed walking user interfaces  to enlarge targets while 
users walk to maintain touch accuracy. WalkType [20] by 
Goel et al. is a technique to improve text entry on mobile 
devices by leveraging accelerometer data. Musić et al. [41] 
showed that users’ gait phase can be used as a signal for 
an offset model to improve touch accuracy. In our work, 
we demonstrate that technology developed to aid people 
with motor impairments also benefits users in motor-
impairing situations. 

2.5 Ability-Based Design 

Ability-based design [57,58] is a set of concepts, 
principles, and examples that implore designers to focus 
on the abilities that users possess, rather than on what 
abilities users lack. Ability-based design encourages 
designers to place the burden of adapting to users’ 
abilities on systems, rather than force users to adapt 
themselves to meet the ability-demands of the 
technologies they use. The SUPPLE system [18,19] 
embodies this principle well, as SUPPLE automatically 
generates customized user interfaces based on a user’s 
mouse-pointing performance. Cluster Touch embraces 
ability-based design by allowing users to calibrate their 
smartphone touch screens to better accommodate their 
touch behaviors, rather than having to adapt themselves 
to the demands of existing touch screens. 

3 EXPLORATION OF TOUCH OFFSETS 

Touch input is imprecise because a finger occupies an area 
instead of a single pixel [52], and because users have their 
own mental models of how finger contact corresponds to 
their desired touch-point on the screen [28,29]. When a 
user attempts to acquire a target, the distance between the 
reported touch location and the location of the intended 
target is a two-dimensional touch-offset vector (Figure 2). 

 
Figure 2: The difference between a user’s touch location 
and the location of the intended target is a two-
dimensional touch-offset vector. 

Prior research has investigated touch error offsets 
[9,25,28,29,55]. Our work adds to prior work by examining 
the touch error offsets created by people with motor 
impairments, and people without motor impairments 
experiencing situational impairments. Without the 
knowledge of how touch offsets affect these users’ touch 
accuracies, it is difficult to devise solutions to correct for 
these errors. To better understand these touch offsets, we 
conducted a preliminary study where we collected touch 
data from users with and without motor impairments 
repeatedly touching a randomly-placed crosshairs 
displayed on a Google Nexus 6 smartphone. 

3.1 Participants 

We recruited 4 people with motor impairments (3 female, 
1 male, average age 31.5, SD=6.8), and 8 people without 
impairments (5 female, 3 male, average age 27.4, SD=5.1) 
to participate in our exploratory study. Participants with 
motor impairments were paid $30 USD for their 
participation, and participants without motor impairments 
were paid $15. Participants were recruited through word 
of mouth and through listservs of organizations that 
support people with various motor impairments. All 
participants were right-handed. Two participants with 
motor impairments had cerebral palsy, one had muscular 
dystrophy, and one had multiple sclerosis. 
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3.2 Apparatus 

Touch data was collected using an experiment testbed 
developed for Android 8.1 using C# and the Xamarin 
framework. The testbed captured and logged all touch 
events. For each touch event, the reported x- and y-
coordinates of the touch were captured along with a 
timestamp. All sessions were conducted on a Google 
Nexus 6 smartphone (15.14 cm diagonal with a screen 
resolution of 1440 × 2560 pixels) running Android 8.1. 

3.3 Procedure 

Each participant completed a single lab session that lasted 
between 30 minutes to an hour. Participants with motor 
impairments completed 540 target selection trials in each 
session while seated. Non-motor-impaired participants 
completed 540 selections trials while standing, and 
another 540 selection trials while walking on a treadmill. 
The treadmill’s speed was set to allow for a comfortable 
walking pace for each participant. Non-motor-impaired 
participants were asked to hold the phone in their non-
dominant hand, and to touch the screen with the index 
finger of their dominant hand. Participants with motor 
impairments were asked to hold the phone in whichever 
way was most comfortable for them, and to touch the 
screen with a finger on their dominant hand (Figure 3). 

 
Figure 3: A participant with motor impairments completes 
a target selection trial on the Google Nexus 6 smartphone.   

A single crosshairs was shown on the screen in each 
trial. Users were instructed to touch the center of the 
crosshairs as accurately as possible. The crosshairs were 
spaced equally around the screen but shown in a random 
order. No crosshairs’s center appeared within 150 pixels of 
the screen border. A trial began when a finger contacted 
the screen and ended once the finger was lifted. A new 
crosshairs was displayed on the screen at the end of each 
trial. No feedback regarding touch locations was provided. 
Four (participants) × 540 (trials) = 2160 trials were 
collected from participants with motor impairments. We 
removed 54 outliers (touches that occurred more than 
15 mm away from the intended target), resulting in a total 

of 2106 trials. Eight (participants) × 540 (trials) × 2 

(postures) = 8640 trials were collected from participants 

without motor impairments. 

3.4 Results 

We collected a total of 2160 + 8640 = 10,800 trials from our 
12 participants. In the following sections, we provide an 
analysis of our collected touch data, which focused on two 
properties of touch error offsets: direction and magnitude. 

3.4.1 Offset Direction. Offset direction refers to the 
location of touches relative to the intended target. Prior 
research has found that the direction of offsets varies 
depending where on the screen users touch [9,25,55]. To 
analyze the direction of touch offsets, we segmented the 
screen into 9 regions along its x-axis and 15 regions along 
its y-axis. We selected these dimensions to provide an 
adequate number of examples per segmented region along 
each screen axis. We calculated the percentage of touches 
that occurred to the left and right of, as well above or 
below, the intended crosshairs in each x- and y-region. 
Figure 4 shows a heat map of the offset directionality 
along the x-axis (left or right), and along the y-axis (above 
or below). 

 
Figure 4: Heat maps of percentages of touches that 
occurred to the left (yellow) or right (blue) of the intended 
crosshairs (top), and of touches that occurred below 
(yellow) or above (blue) the intended crosshairs (bottom). 
“M.I.” stands for users with motor impairments. 

Participants in our three user groups exhibited similar 
touch behaviors across the various screen regions. As 
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shown in the top of Figure 4, most participants’ touches 
occurred to the right of the intended crosshairs. Overall, 
83.3% of touches occurred to the right of the crosshairs for 
participants with motor impairments; and 63.7% and 69.7% 
of touches occurred to the right for users without 
impairments while walking and standing, respectively. 
Touch behaviors differ from the left to the right side of the 
screen, with crosshairs displayed on the right side 
producing a greater percentage of touches occurring to 
the left of the crosshairs. Across all three user groups, 
crosshairs shown on the left-third region of the screen 
resulted in 35.2% of touches occurring to the left, and 
crosshairs shown on the right-third of the screen resulted 
in 53.6% of touches occurring to the left. 

Regarding the y-axis, most participants’ touches 
occurred below the intended crosshairs: 84.6% of touches 
produced by participants with motor impairments were 
below the intended crosshairs, and 59.2% and 63.6% of 
touches occurred below for users without impairments 
while walking and standing, respectively. The bottom of 
Figure 4 shows that touches occur above the intended 
crosshairs more frequently as crosshairs near the bottom 
of the screen. For the three user groups, crosshairs shown 
on the top-third of the screen resulted in 31.7% of touches 
occurring above, and crosshairs shown on the bottom-
third of the screen resulted in 42.5% of touches occurring 
above. 

3.4.2 Offset Magnitude. The average distance between 
the touch and the intended crosshairs was 3.79 mm 
(SD=0.71) for participants with motor impairments, and 
2.86 mm (SD=0.60) and 2.46 mm (SD=0.31) for participants 
without impairments while walking and standing, 
respectively. Similar to offset direction, the magnitude of 
touch errors varies depending on the screen region 
[22,25]. We segmented the screen into 9 regions along its 
x-axis and 15 regions along its y-axis and calculated the 
average x- and y-offset distance for each region. Figure 5 
shows a heat map of the average x-offset (top) and y-offset 
(bottom) error. 

As shown in the top half of Figure 5, the magnitude of 
x-offsets tends to be smaller on the right side of the screen 
compared to the left side. The average magnitude of x-
offset errors was 2.26 mm (SD=0.91) for participants with 
motor impairments, and 1.76 mm (SD=0.38) and 1.53 mm 
(SD=0.25) for participants without impairments while 
walking and standing, respectively. Changes in magnitude 
of the y-offsets were less pronounced along the y-axis but 
accounted for more of the total touch error. The average 
magnitude of y-offset errors was 2.70 mm (SD=0.64) for 
participants with motor impairments, and 1.89 mm 

(SD=0.59) and 1.61 mm (SD=0.23) for people without 
impairments while walking and standing, respectively. 

3.5 Discussion 

Our results provide useful insights into the touch 
behaviors of people with motor impairments, and people 
without impairments who are walking and standing. 
Similar to previous investigations [25,55], our exploration 
of touch-offset direction found that touch locations vary 
depending  
 

 
Figure 5: Heat maps of the average x-offset error (top) and 
average y-offset error (bottom). Areas shown in red 
indicate more error. “M.I.” stands for users with motor 
impairments.  

where on the screen the user is targeting. The direction of 
x- and y-offsets were similar across all three user groups, 
with participants typically aiming below and to the right 
of their intended crosshairs. On average, participants with 
motor impairments produced fewer touches above and to 
the left of intended crosshairs than participants who were 
walking or standing. However, the trend of producing 
more touches to the left of crosshairs located on the right 
portion of the screen, and touches above crosshairs 
located on the bottom portion of the screen, was true for 
all groups. 

The average touch error was much higher for 
participants with motor impairments compared to 
participants walking or standing. The y-offset error was 
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bigger than the x-offset error for all three user groups, but 
there was less noticeable change in the magnitude of y-
offsets along the y-axis. The bottom heat map in Figure 5 
does show higher magnitude y-offset errors along the top-
left portion of the screen for participants with motor 
impairments, which suggests that reaching towards this 
region of the screen was difficult. The magnitude of x-
offsets was smaller along the right side of the screen 
compared to the left side for the three user groups. 

Taken together, these results show that the direction of 
touch offsets is similar for all three user groups, but the 
magnitude of these offsets differs across groups. 
Correcting erroneous offsets will allow people with motor 
impairments, and people undergoing the effects of 
situational impairments such as walking, to have more 
successful experiences when engaging in everyday tasks 
such as texting on their smartphones. Leveraging what we 
learned from this exploration of touch offsets, we created 
Cluster Touch, a combined user-independent and user-
specific touch offset model that corrects touch offsets to 
provide more accurate touch predictions. 

4 THE DESIGN OF CLUSTER TOUCH 

Our Cluster Touch model was designed to improve the 
accuracy of touch input on smartphone touch screens for 
people with motor impairments, and for people in motor 
impairing situations. A key goal for Cluster Touch is to 
allow users to quickly improve the accuracy of their 
smartphone touch screen. Providing touch examples can 
require significant time and physical effort by people with 
motor impairments [40]. Thus, it is important that Cluster 
Touch improves touch accuracy while requiring as little 
effort from users as possible. As a result, Cluster Touch is 
a combined user-independent and user-specific touch 
model. The user-independent model captures common 
touch behaviors across multiple individuals. The user-
independent model is then updated with touch examples 
provided by an individual user, allowing the model to 
adapt to his or her specific touch behavior. This section 
describes our user-independent and user-specific models. 

4.1 User-Independent Model 

From our exploration of touch offsets, we found that touch 
behaviors, such as touching to the right of crosshairs 
located on the left part of the screen, are similar across 
user groups. Cluster Touch takes advantage of this finding 
by combining touch examples from multiple users to 
create a user-independent touch model. To build our user-
independent model, we collect N touch examples from 
individual users. Each example consists of the recorded 

touch location t and the location of the intended target i, 
where t and i are two-dimensional screen coordinates. For 
each example, the x- and y-offsets ox and oy are computed 
by subtracting the location of the recorded touch from the 
location of the intended target: 

𝒐𝑥 = 𝒊𝑥 − 𝒕𝑥 
 𝒐𝑦 = 𝒊𝑦 − 𝒕𝑦 (1) 

The screen is segmented into 10 equal partitions along 
the x- and y-axes (i.e., 10 columns for the x-dimension and 
10 rows for the y-dimension). Ten partitions were chosen 
so that each partition held approximately 10% of the data 
for each axis. (Note that the number of partitions used to 
build the user-independent model differs from the number 
of partitions used to explore touch offsets in the previous 
section.) Each x- and y-offset is placed into one of these 
partitions depending on the location of i. The average x-
offset 𝒐𝑥 is computed for each partition along the x-axis, 
and the average y-offset 𝒐𝑦 is computed for each partition 
along the y-axis: 

𝒐𝑥 =  
∑ 𝒐𝑥

𝑛
  

𝒐𝑦 =  
∑ 𝒐𝑦

𝑛
 (2) 

Next, we use k-means clustering [24] on our averaged 
binned x- and y-offsets to identify screen regions where 
the magnitude of touch offsets are similar along the x- and 
y-dimensions of the screen (see Figure 6). From multiple 
iterations of testing, a k of 3 was chosen, which roughly 
creates clusters along the top, middle, and bottom of the 
screen in the y-dimension, and clusters along the left, 
middle, and right of the screen in the x-dimension. 
Because k-means was computed for the binned x- and y-
offsets separately, our model consists of 6 total clusters (3 
along each axis). Each cluster c contains the location of 
the cluster in its respective x- or y-dimension, and a 
corrective offset. The benefit of using clusters is that it 
allows for the generalization of touch behaviors to screen 
regions, removing the need to collect touch examples from 
every part of the screen. As a result, to update the user-
independent model, only a few examples from each 
cluster region are needed. 

4.2 User-Specific Model 

The user-independent model captures general smartphone 
touch behavior but is unaware of the touch abilities of any 
specific user. Our exploration of touch offsets showed that 
users’ magnitudes vary between groups, with users with 
motor impairments exhibiting the greatest amount of 
error. Thus, the goal of our user-specific model is to keep 
the location of our found clusters—as they represent the 
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locations where offsets tend to be similar—but to update 
the magnitude of the corrective offset of each cluster to 
better correct offsets produced by the given user. 

To make our user-independent model user-specific, we 
collect touch samples from an individual user. For each 
sample, we calculate the x- and y-offsets (Eq. 1) and bin 
them in their respective dimensions according to the 
proximity of i to the location of each cluster c. There are 
three bins per dimension, one for each cluster. The 
average x- and y-offsets are then computed for each bin 
(Eq. 2). 

 
Figure 6: A plot of the average binned offsets along the 
screens’ x- and y-axes. Cluster locations are shown in 
orange. Each cluster has a location (the value on the x-
axes) and a corrective offset (the value on the y-axes). 

Cluster offsets c are updated to c' by averaging the 
corrective offset for each cluster (𝒄𝑥  and 𝒄𝑦) with the 
average offset (𝒐𝑥  and 𝒐𝑦 ) in the bin closest to each 
cluster: 

𝒄′𝑥 =  
𝒄𝑥 + 𝒐𝑥

2
 

𝒄′𝑦 =  
𝒄𝑦 + 𝒐𝑦

2
 (3) 

We tested different weighted averages and found that 
simply averaging the binned and cluster offsets provided 
additional accuracy without introducing too much 
variance. 

4.3 Touch Prediction 

Given a new touch t, we find clusters 𝒄′𝑥 and 𝒄′𝑦 that are 
closest to tx and ty. If tx or ty are located between two 
clusters, we compute the interpolated corrective offset 
between the clusters depending on the location of t 
relative to the two clusters. If tx or ty are not located 
between clusters (e.g., a touch occurs left of the leftmost 
cluster), the corrective offset of the closest cluster is taken. 
To predict the new touch point t', we add the corrective 
offsets o—either interpolated or taken directly from a 
cluster—from each dimension to the given touch: 

𝒕𝑥
′ = 𝒕𝑥 +  𝒐𝑥 

𝒕𝑦
′ = 𝒕𝑦 + 𝒐𝑦  (4) 

4.4 Number of Training Examples 

Because the goal of Cluster Touch is to allow users to 
quickly improve the accuracy of their touch screens, we 
tested different numbers of training examples to see how 
they impacted performance. We built a user-independent 
model from touch samples provided by participants from 
our exploratory study who were standing and created 
user-specific models with touch data from our participants 
with motor impairments. We incremented the number of 
samples E from 10 to 200 to see how well the combined 
model performed with various numbers of training 
examples (Table 1). 

Table 1: Mean error distance in millimeters (lower is 
better) for different numbers of training examples. 
Standard deviations are shown in parentheses. 

Mean Error Distance (mm) 
E=0 E=10 E=20 E=50 E=100 E=150 E=200 
2.84 
(0.59) 

2.61 
(0.29) 

2.57 
(0.24) 

2.55 
(0.23) 

2.54 
(0.23) 

2.54 
(0.22) 

2.53 
(0.22) 

 
Table 1 shows that increasing the number of training 

examples can improve touch accuracy. However, this 
increase in accuracy comes at the expense of time, which 
can be problematic for people with motor impairments. 
For our evaluation of Cluster Touch, we decided E=20 
training examples provided a good balance between speed 
(the time required to provide the touch samples) and 
accuracy. 

5 EVALUATION OF CLUSTER TOUCH 

To determine how accurately Cluster Touch can predict 
users’ intended touch locations, we performed an 
evaluation of Cluster Touch with 12 participants with 
motor impairments and 12 walking participants. For our 
evaluation, we conducted three separate analyses. First, 
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we evaluated Cluster Touch’s ability to predict target 
locations during an interactive target selection task. 
Second, we performed an offline crosshairs analysis of 
Cluster Touch and compared its performance to two 
machine learning-based touch offset models. Third, we 
performed another offline analysis to see if Cluster Touch 
could improve touch accuracy for actual existing mobile 
interfaces. For each study, we built a user-independent 
model using 1000 examples from participants in our 
exploratory study who were standing. Twenty touch 
examples were then used from each participant to create 
their combined user-independent and user-specific touch 
model. 

5.1 Participants 

We recruited 12 people with motor impairments (6 female, 
6 male, average age 37.9 years, SD=13.7) and 12 people 
without impairments (7 female, 5 male, average age 24.8 
years, SD=4.86) to participate in our study. No participants 
from our previous exploratory study were involved in this 
evaluation study. Participants were recruited through the 
same means as described in our exploratory study. 
Participants with motor impairments were paid $30 USD 
and participants without impairments were paid $15. All 
participants with motor impairments were right-handed, 
and 11 participants without impairments were right-
handed. Additional details about our participants with 
motor impairments can be found in Table 2. 

5.2 Apparatus 

Touch data was collected using an experiment testbed 
developed for Android 8.1 using C# and the Xamarin 

framework. The testbed captured and logged all touch 
events. For each touch event, the reported x- and y-
coordinates of the touch were captured along with its 
timestamp. All sessions were conducted on a Google 
Nexus 6 smartphone (15.14 cm diagonal with a screen 
resolution of 1440 × 2560 pixels) running Android 8.1. 

5.3 Procedure 

Each participant completed a single lab session that lasted 
30 minutes to an hour. Participants with motor 
impairments were asked to hold the phone in whichever 
manner was most comfortable for them, and to touch the 
screen with a finger from their dominant hand. All 
participants with motor impairments placed the phone on 
the table in front of them. Participants without 
impairments were asked to hold the phone in their non-
dominant hand and to touch the screen with a finger from 
their dominant hand. 

Each participant completed two tasks. First, each 
participant completed the crosshairs selection task 
described above in our exploration of touch offsets. Each 
participant completed 540 crosshairs selection trials. 

Second, participants completed a target selection task 
where they were instructed to select a square 6×6 mm 
target placed in a grid as accurately as possible. A trial 
started when the participant touched the screen and ended 
when the finger was lifted. At the end of the trial, a new 
square in the grid was highlighted to indicate the next 
target. Successfully acquired targets were briefly 
highlighted green and unsuccessfully acquired targets 
were briefly highlighted red. Participants completed this 
task twice, once using the touch locations generated by 

     Self-reported impairments† 

ID Age Sex Health condition Mo Sp St Tr Co Fa Gr Ho Se Dir Dis 

1 30 F Cerebral Palsy ✓ ✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓ 

2 21 M Cerebral Palsy ✓ ✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓ 

3 55 M Multiple Sclerosis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

4 19 F Cerebral Palsy ✓  ✓  ✓ ✓ ✓ ✓  ✓ ✓ 

5 38 F Muscular Dystrophy ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

6 43 F Parkinson’s Disease  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ 

7 23 M Cerebral Palsy ✓ ✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓ 

8 39 F Muscular Dystrophy ✓  ✓  ✓ ✓ ✓ ✓  ✓ ✓ 

9 46 M Multiple Sclerosis  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ 

10 50 M Cerebral Palsy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

11 64 M Parkinson’s Disease ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ 

12 27 F Cerebral Palsy ✓  ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

† Mo = slow movements, Sp = spasm, Tr = tremor, Co = poor coordination, Fa = rapid fatigue, Gr = difficulty gripping, Ho = difficulty 

holding, Se = lack of sensation, Dir = difficulty controlling direction, Dis = difficulty controlling distance. 

Table 2: Demographic information for participants with motor impairments. Self-report categories are from Findlater et 
al. [15]. 
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the phone’s touch sensors and again using predictions 
from Cluster Touch. A user-specific model was created for 
each participant using only 20 touch examples collected 
during the crosshairs task. Examples were selected to 
ensure they provided good coverage of the screen. 
Participants were unaware that Cluster Touch was active, 
and no feedback about touch locations was provided in 
either condition. We chose not to provide location 
feedback to participants, as we did not want the feedback 
to alter participants’ touch behaviors.  

Participants with motor impairments completed both 
tasks while seated, and participants without impairments 
completed both tasks while standing and while walking. 
Twelve (participants) × 540 (trials) = 6480 crosshairs trials 
were completed by participants with motor impairments; 
and 12 (participants) × 540 (trials) × 2 (postures) = 12,960 
crosshairs trials were completed by participants without 
motor impairments. Twelve (participants) × 50 (trials) × 2 
(techniques) = 1200 interactive trials were completed by 
participants with motor impairments; and 12 
(participants) × 50 (trials) × 2 (techniques) × 2 (postures) = 
2400 interactive trials were completed by participants 
without motor impairments. 

5.4 Design and Analysis 

We completed separate analyses for data collected from 
participants with and without motor impairments. We 
conducted three experiments with each group. 

The first was to determine if Cluster Touch could 
improve touch accuracy over the native touch sensor 
during an interactive target selection task. For our 
analysis of participants with motor impairments, our 
experiment was a within-subjects design with one factor 
of two levels: 

• Technique: Nexus, Cluster Touch 
Our experiment for participants without motor 

impairments was a 2×2 within-subjects design with the 
same Technique factor as above, but with an additional 
factor of two levels: 

• Posture: Standing, Walking 
In all experiments, “Nexus” refers to the touch-down 

location reported by the native touch sensor on the 
Google Nexus 6. The presentation of Technique was 
counterbalanced to account for order effects. 

Our second experiment compared target prediction 
accuracy of Cluster Touch to the native touch sensor in 
the Nexus, and to two machine learning-based touch-
offset models previously shown to improve touch 
accuracy [9,55]. Our analysis for participants with motor 

impairments was a within-subjects design with one factor 
of four levels: 

• Technique: Nexus, Cluster Touch, Gaussian 
Process [55], Linear Offset [9] 

The experiment for participants without motor 
impairments was a 4×2 within-subjects design with the 
same Technique factor as above and the same Posture 
factor as in the first experiment (standing, walking). 

For this analysis, we implemented a testing procedure 
based on machine learning evaluations [35]. For each 
participant, we randomly selected 20 touch samples (i.e., 
trials from the crosshairs selection task) as training 
examples for the three models in Technique. We used 
these models to predict intended touch points for the 
remaining trials. This procedure was performed 100 times 
for each participant, with a new set of training examples 
being randomly selected each time. We used the 
recommended parameters described in prior work [7] for 
the Gaussian Process [55] and Linear Offset [9] models. To 
train the models, we used the 1000 examples used to train 
the user-independent model as well the 20 touch samples 
used to train the user-specific portion of the combined 
model. 

For our third experiment, we conducted an offline 
analysis of actual mobile applications to determine 
whether Cluster Touch could improve touch accuracy 
over the native touch sensor. We extracted 15,231 
clickable targets from mobile interfaces in the RICO 
dataset [12]. For each crosshairs trial, we checked whether 
the location of the crosshairs for that trial was within the 
bounds of any target. Next, we used Cluster Touch to 
predict a new touch location for that trial. A “hit” 
occurred if the predicted touch landed within the bounds 
of the target. Our analysis for participants with motor 
impairments was a within-subjects design with the same 
Technique factor as in the first experiment. 

For participants without motor impairments, our 
experiment was a 2×2 within-subjects design with the 
same Technique factor as above and the same Posture 
factor as in the experiments above (standing, walking). 

Target Hit Rate, the proportion of touches that 
successfully fell within the bounds of the target, was the 
dependent variable in the first and third experiments. The 
dependent variable of interest for our second experiment 
was Error Distance, measured by the Euclidean distance 
between the center of the crosshairs in each trial and the 
predicted target location of each technique. A mixed-
effects model analysis of variance [34] was used to analyze 
Error Distance. Our model used fixed-effects for Technique 
and Posture. Subject was a random effect to accommodate 
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repeated measures. Post hoc pairwise comparisons were 
computed using Holm’s sequential Bonferroni procedure 
[27] to correct for multiple comparisons. The 
nonparametric aligned rank transform procedure 
[26,45,56] was used to analyze Hit Rate for participants 
without motor impairments, as this measure did not 
conform to the assumptions of ANOVA. Nonparametric 
Wilcoxon signed-rank tests were used to analyze Hit Rate 
for participants with motor impairments. 

6 RESULTS 

This section presents the results of our three experiments 
to determine the effectiveness of Cluster Touch for 
participants with and without motor impairments. 

6.1 Interactive Selection Task 

For participants with motor impairments, the average Hit 
Rate was 85.52% (SD=3.06%) with Cluster Touch and 
74.50% (SD=3.88%) for Nexus. This difference was 
statistically significant (Z=-39.00, p<.001). The average Hit 
Rates for participants without motor impairments are 
shown in Table 3. There was a significant main effect of 
Technique (F1,33=73.69, p<.0001) and Posture (F1,33=58.05, 
p<.0001) on Hit Rate. There was no significant Technique × 

Posture interaction (F1,33=0.63, n.s.). 

Table 3: Overall means for Hit Rate (higher is better) for 
levels of Technique and Posture for participants without 
motor impairments. Standard deviations are in 
parentheses.  

Mean Hit Rate (%) 
Technique Posture Hit Rate 

Cluster Touch Standing 95.33% (1.97%) 
Nexus Standing 91.67% (2.67%) 

Cluster Touch Walking 92.04% (2.07%) 
Nexus Walking 86.33% (2.90%) 

6.2 Crosshairs Prediction 

Table 4 shows mean Error Distance for participants with 
and without motor impairments. There was a significant 
effect of Technique on Error Distance (F3,33=109.34, p<.0001) 
for our participants with motor impairments. Pairwise 
comparisons showed that Cluster Touch was more 
accurate than Nexus, Gaussian Process, and Linear Offset 
(p<.01). For our group without impairments, there was a 
significant effect of Technique (F3,77=7.57, p<.001) and 
Posture (F3,77=168.93, p<.0001) on Error Distance. There was 
no significant Technique × Posture interaction (F3,77=0.58, 

n.s.). Pairwise comparisons showed that Cluster Touch was 

significantly more accurate than Nexus (p<.001). 

Table 4: Overall means for Error Distance (lower is better) 
for levels of Technique and Posture for participants with 
and without motor impairments. Standard deviations are 
in parentheses. 

Mean Error Distance (mm) 
Group Cluster 

Touch 
Gaussian 
Process 

Linear 
Offset 

Google 
Nexus 6 

M.I. 
2.81 

(0.28) 
3.17  

(0.34) 
3.15 

(0.34) 
3.42 

(0.37) 

Standing 
2.22 

(0.24) 
2.31  

(0.22) 
2.31 

(0.22) 
2.41 

(0.26) 

Walking 
2.67 

(0.34) 
2.80  

(0.29) 
2.80 

(0.29) 
2.85 

(0.30) 

6.3 RICO UI Analysis  

For participants with motor impairments, the average Hit 
Rate was 90.04% (SD=3.30%) for Cluster Touch and 82.97% 
(SD=4.80%) for Nexus. This difference was statistically 
significant (Z=-39.00, p<.001). Average Hit Rates for 
participants without motor impairments are shown in 
Table 5. There was a significant main effect of Technique 
(F1,33=82.45, p<.001) and Posture (F1,33=72.29, p<.0001) on 
Hit Rate. There was no significant Technique × Posture 

interaction (F1,33=3.67, n.s.). 

Table 5: Overall means for Hit Rate (higher is better) for 
levels of Technique and Posture. Standard deviations are 
shown in parentheses. 

Mean Hit Rate (%) 
Technique Posture Hit Rate 

Cluster Touch Standing 95.23% (1.67%) 
Nexus Standing 93.02% (2.01%) 

Cluster Touch Walking 93.22% (1.85%) 
Nexus Walking 89.08% (2.27%) 

7 DISCUSSION 

The results from our experiment show that Cluster Touch 
can significantly improve smartphone touch screen 
accuracy for people with motor impairments and people in 
motor-impairing situations like walking. In the interactive 
selection tasks, Cluster Touch was 14.65% more accurate 
than the touch-down location reported by the Nexus 6’s 
native sensor. These results are encouraging, as they 
demonstrate that Cluster Touch can be used in real time to 
improve smartphone touch accuracy. Furthermore, this 
increase in accuracy only required participants to provide 
20 touch examples. Reducing the time and effort required to 
calibrate smartphone touch screens is an important goal, as 
users with motor impairments might struggle to complete a 
laborious calibration procedure. Our offline analysis 
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comparing Cluster Touch to the Gaussian Process [55] and 
Linear Offset [9] models showed that Cluster Touch can 
improve touch accuracy just as well or better than these 
touch models based on machine learning when the number 
of user-provided examples is small. For participants with 
motor impairments, Cluster Touch was 11.36% more 
accurate than the Gaussian Process model and 10.79% more 
accurate than the Linear Offset model. Cluster Touch 
benefits from its combined user-independent and user-
specific touch models, as a greater percentage of user touch 
behavior is represented compared to shared models based 
on machine learning. 

Cluster Touch was, on average, more accurate for users 
while walking compared to the Nexus in the first 
experiment, increasing touch accuracy by 6.81%. Cluster 
Touch was also slightly more accurate in predicting target 
locations for walking participants than the Gaussian 
Process [55] and Linear Offset [9] models, improving 
accuracy by 4.64% over both models. These results 
demonstrate that Cluster Touch could also provide benefits 
to users experiencing the effects of situational impairments 
like walking. Smartphones could detect when a user begins 
to walk and switch to the walking model, then switch back 
to the standing model when the user stops walking. Cluster 
Touch also improved average touch accuracy for 
participants while standing by 4.37%, which suggests that 
this model could be used by a wide assortment of users or 
applications. For example, mobile game developers might 
implement Cluster Touch to improve touch accuracy while 
gaming. 

Our analysis of existing targets in the RICO dataset [12] 
showed that Cluster Touch can improve touch accuracy for 
various real mobile applications. Of the more than 15,000 
interface targets we tested, Cluster Touch improved touch 
accuracy by 8.21% over the Nexus 6 for participants with 
motor impairments. Improved touch accuracy of mobile 
applications could be a huge benefit to people with motor 
impairments, as more recreational and work-related 
applications transition from the desktop to smartphones.  

Because touch locations were reported on touch-down, 
we did not record slippage in our studies. Prior research has 
shown that slippage can occur when users with motor 
impairments interact with touch-enabled devices [36,51]. 
Touch models for people with motor impairments can 
leverage designs intended to help with slippage, such as the 
Steadied-bubbles technique [36], which locks the location of 
the touch (or pen) on touch-down. 

7.1 Limitations and Future Work 

A limitation of this work is that we only trained touch 
models for one pose, namely holding the phone in the non-
dominant hand and touching the screen with the index 
finger from the dominant hand. Also, all but one of our 
study participants were right-handed, meaning that some of 
the touch behaviors we identified could be different for left-
handed users. If so, Cluster Touch could build different 
user-independent models for left-handed users and for 
different phone grips. We could then use techniques that 
can identify changes in grip and handedness [21,43] to load 
the appropriate model. Further analysis of how different 
grips, such as one-handed use, impact model creation and 
performance is left for future work. 

Another limitation is that our study participants were 
experienced smartphone users, which means they might be 
more accurate than novice smartphone users, or than 
people for whom touch screens pose significant 
accessibility challenges [40,51]. Further research is needed 
to collect touch data from more participants with motor 
impairments (i.e., hundreds instead of dozens) to 
understand how touch screen experience and motor 
capabilities impact the creation and accuracy of our models.  

Other future work includes understanding how Cluster 
Touch might accommodate changes in touch behavior over 
time, as the touch abilities of people with motor 
impairments might fluctuate throughout the day for various 
reasons, such as fatigue or the effects of medication. It is 
also important to understand how Cluster Touch performs 
on other smartphones, and to understand if a Cluster Touch 
model created on one smartphone can transfer effectively 
to a different smartphone. 

8 CONCLUSION 

We have investigated touch offsets created by people with 
motor impairments, and by people without impairments 
while walking and standing. Our analysis found that users 
across groups exhibited similar touch behaviors regarding 
where touches occur relative to their intended targets, but 
that the magnitude of these errors was more pronounced 
for people with motor impairments and for walking people 
than for people who were standing. To improve touch 
screen accuracy for people with motor impairments, and for 
people in motor-impairing situations, we created Cluster 
Touch, a combined user-independent and user-specific 
touch model that can improve touch accuracy by collecting 
only 20 touch examples from the target user. In an 
evaluation of Cluster Touch, we found that it was 
significantly more accurate in predicting intended target 
locations for people with motor impairments than the touch 
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sensors found in the Google Nexus 6 smartphone. Cluster 
Touch also improved accuracy over two prior statistical 
machine learning models, Gaussian Process [55] and Linear 
Offset [9]. We also found that Cluster Touch was able to 
improve touch accuracy for people without impairments 
who were walking, demonstrating that Cluster Touch has 
the potential to provide accuracy improvements for a range 
of users in different situations. 
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